Structural reorganisation of cellulose fibrils in hydrothermally deconstructed lignocellulosic biomass and relationships with enzyme digestibility

نویسندگان

  • Roger Ibbett
  • Sanyasi Gaddipati
  • Sandra Hill
  • Greg Tucker
چکیده

BACKGROUND The investigation of structural organisation in lignocellulose materials is important to understand changes in cellulase accessibility and reactivity resulting from hydrothermal deconstruction, to allow development of strategies to maximise bioethanol process efficiencies. To achieve progress, wheat straw lignocellulose and comparative model wood cellulose were characterised following increasing severity of hydrothermal treatment. Powder and fibre wide-angle X-ray diffraction techniques were employed (WAXD), complemented by enzyme kinetic measurements up to high conversion. RESULTS Evidence from WAXD indicated that cellulose fibrils are not perfectly crystalline. A reduction in fibril crystallinity occurred due to hydrothermal treatment, although dimensional and orientational data showed that fibril coherency and alignment were largely retained. The hypothetical inter-fibril spacing created by hydrothermal deconstruction of straw was calculated to be insufficient for complete access by cellulases, although total digestion of cellulose in both treated straw and model pulp was observed. Both treated straw and model pulps were subjected to wet mechanical attrition, which caused separation of smaller fibril aggregates and fragments, significantly increasing enzyme hydrolysis rate. No evidence from WAXD measurements was found for preferential hydrolysis of non-crystalline cellulose at intermediate extent of digestion, for both wood pulp and hydrothermally treated straw. CONCLUSIONS The increased efficiency of enzyme digestion of cellulose in the lignocellulosic cell wall following hydrothermal treatment is a consequence of the improved fibril accessibility due to the loss of hemicellulose and disruption of lignin. However, incomplete accessibility of cellulase at the internal surfaces of fibrillar aggregates implies that etching type mechanisms will be important in achieving complete hydrolysis. The reduction in crystalline perfection following hydrothermal treatment may lead to an increase in fibril reactivity, which could amplify the overall improvement in rate of digestion due to accessibility gains. The lack of preferential digestion of non-crystalline cellulose is consistent with the existence of localised conformational disorder, at surfaces and defects, according to proposed semicrystalline fibril models. Cellulases may not interact in a fully selective manner with such disordered environments, so fibril reactivity may be considered as a function of average conformational states.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Ibbett, Roger and Gaddipati, Sanyasi and Hill, Sandra and Tucker, Gregory A. (2013) Structural reorganisation of cellulose fibrils in hydrothermally deconstructed lignocellulosic biomass and relationships with enzyme

Background: The investigation of structural organisation in lignocellulose materials is important to understand changes in cellulase accessibility and reactivity resulting from hydrothermal deconstruction, to allow development of strategies to maximise bioethanol process efficiencies. To achieve progress, wheat straw lignocellulose and comparative model wood cellulose were characterised followi...

متن کامل

Features of promising technologies for pretreatment of lignocellulosic biomass.

Cellulosic plant material represents an as-of-yet untapped source of fermentable sugars for significant industrial use. Many physio-chemical structural and compositional factors hinder the enzymatic digestibility of cellulose present in lignocellulosic biomass. The goal of any pretreatment technology is to alter or remove structural and compositional impediments to hydrolysis in order to improv...

متن کامل

Surface properties correlate to the digestibility of hydrothermally pretreated lignocellulosic Poaceae biomass feedstocks

BACKGROUND Understanding factors that govern lignocellulosic biomass recalcitrance is a prerequisite for designing efficient 2nd generation biorefining processes. However, the reasons and mechanisms responsible for quantitative differences in enzymatic digestibility of various biomass feedstocks in response to hydrothermal pretreatment at different severities are still not sufficiently understo...

متن کامل

Bioethanol Production by Miscanthus as a Lignocellulosic Biomass: Focus on High Efficiency Conversion to Glucose and Ethanol

Current ethanol production processes using crops such as corn and sugar cane have been well established. However, the utilization of cheaper lignocellulosic biomass could make bioethanol more competitive with fossil fuels while avoiding the ethical concerns associated with using potential food resources. In this study, Miscanthus, a lignocellulosic biomass, was pretreated using NaOH to produce ...

متن کامل

Conversion of Lignocellulosic Biomass to Nanocellulose: Structure and Chemical Process

Lignocellulosic biomass is a complex biopolymer that is primary composed of cellulose, hemicellulose, and lignin. The presence of cellulose in biomass is able to depolymerise into nanodimension biomaterial, with exceptional mechanical properties for biocomposites, pharmaceutical carriers, and electronic substrate's application. However, the entangled biomass ultrastructure consists of inherent ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 6  شماره 

صفحات  -

تاریخ انتشار 2013